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Exact Probability Distribution for Soluble
Model with Quadratic Noise
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A one-dimensional evolution equation transformable into a linear one coupled
to a quadratic Smoluchowski (an Ornstein-Uhlenbeck ) noise is considered. A
one-dimensional probability distribution is obtained by way of a characteristic
function which is expressed by functionals of the Smoluchowski process. It is
shown that in the frame of the presented approach the probability density can
be found only for a particular value of the damping constant in the linear-type
relaxation equation. It is also shown that in a special case the white noise limit
may be performed.
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1. INTRODUCTION

In recent years we have seen an increasing interest in evolution equations
with fluctuating parameters. The main reason is that equations of this type
become more and more important for different applications.

The one-dimensional differential equation with one linear random
parameter is the simplest case. This type of problem has been investigated
in connection with instabilities of the system induced by noises.”*’ A more
difficult problem is when an evolution equation is a nonlinear function of
the fluctuating parameter. This paper is concerned with a system described
by a nonlinear ordinary differential equation with a quadratic noise assum-
ing that this equation is transformable into a linear equation. In the con-
sidered case, the starting nonlinear equation is coupled to the mul-
tiplicative noise and the transformation leads to a linear one with the
additive noise. Our primary purpose is to obtain the exact one-dimensional
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probability distribution for the process valid for all time ¢> 0. It is assumed
that the initial probability density is the J distribution and that the noise is
a stationary Smoluchowski process. We are able to solve the problem only
for particular values of parameters that occur in the evolution equation.
And only in this case we can obtain a compact formula for the probability
distribution.

There are several works on evolution equations of the Langevin type
with a quadratic noise.“® San Miguel and Sancho™ derived an
approximate form of a Fokker—Planck equation associated with the
Langevin equation. Wodkiewicz®) obtained formally the exact equation for
the probability density. His equation is useful only for approximate
calculations for two reasons. Firstly, it is an integro-differential equation,
and secondly, the kernel of this equation is a differential operator with an
infinite number of derivatives.

In the remainder of this paper, we proceed as follows. In Section 2 we
present the model. In Section 3, the probability distribution related to the
stochastic process is investigated by way of its characteristic function. It
can be expressed by a functional of the Smoluchowski noise. Following
Van Kampen” we define the “curtailed” functional which obeys a definite
equation. Assuming that the solution of this equation may be represented
by a Gaussian-type function, we obtain a set of three ordinary differential
equations of the first order. One of these equations is the Riccati one. It
turns out that explicit formulas for the general solution of the Riccati
equation can be given only for particular values of parameters. It is shown
in Section 4. In Section 5 we present the main result of the paper, namely,
the probability density which is expressed by the Riemann integral of the
real-valued function over a real positive half-axis. In Section 6 we present
simple characteristics of the linear process with the quadratic noise and
compare them with characteristics of the linear process coupled to the
linear noise. The problem of the white noise limit is also considered. Sec-
tion 7 contains final remarks.

2. PROBLEM

This paper deals with a one-dimensional ordinary differential (an
evolution or a kinetic) equation coupled to a quadratic noise. An example
of such a type of equation is given by

x,=a(x,)+ L*b(x,) 2.1
where

xeUcR, X, =Xq (2.2)

0



Soluble Model with Quadratic Noise 1011

and L is a parameter which is the random variable
L=1+y, (2.3)
Here, 4 is the expectation value of L and y, is a noise with the mean value

(yey=0 (2.4)

Because y, may not be a white noise, we take the simplest model of a non-
white noise, namely, y, is assumed to be a stationary Smoluchowski
process

dy,= —ay, dt + (2y)/* dW, (2.5)

where
a,yeRY, yeR (2.6)

and subjects to given initial conditions

(Po>=0,  (y5r=y/a (2.7)
Hence, v, is a colored noise with (2.4) and
Cyeysy=(p/a) exp(—o |t —s]) (2.8)

On the whole, the problem set in this form is unsoluble, aithough the
Kolmogorov-Fokker—Planck equation for the two-dimensional diffusion
process (x,, y,) is known. The problem considerably simplifies when
Eg. (2.1) can be transformed into a linear one, scil. if

dlalx)| ¢
z;[zu‘)}m‘fo (29)

where ¢ is a constant parameter. Then for the variable

_atx)
= (2.10)

we have
Zo=cz,+c(A+y,) (2.11)

Let us consider a slightly different equation
Zo=cz,+v(A+y,)? (2.12)

with the new constant v.
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Our aim is to determine the probability distribution P(z, f) of the
process z, (2.12) with the following initial conditions:

Z,= 2o for t,=0 (2.13)
Py(p,0)= (a/2my)"” exp(—ay®/2y) (2.14)

where P,(y,0) is the initial probability distribution for y, (2.5). The
method to be used is based on the characteristic function of z, and certain
functionals of the Smoluchowski process.

3. CHARACTERISTIC FUNCTION

Simple properties of the process z, (2.12) can be investigated and
obtained from its characteristic function

Clo, 1) =j+°o dz e P(z, 1) = (e (3.1)

—

From Eq. (2.12) it follows that
Clw, 1)=F[ y,|w, t] exp[iwzge + iwd’v{e” — 1)/c] (3.2)

where the functional

Fly, o, t]= <exp [iwve” fo[ die “(y? + 2/1yT)J> (3.3)

1

and the subscript 1 indicates that the mean value is taken over all
realization of the Smoluchowski process y, (2.5) with the initial value
(2.14).

For fixed t = T we define®

Q= wveT (34)

and

Fi[y,12,T]= <exp [iQ JOT dve " (y2 + 2/1y,)}> (3.5)

1

Then, of course,

F[:y,|0), t]=F1[y,|Q=a)ve”, t] (36)
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Let us define the “curtailed” functional”

I'(y, )= <6(y, — y)exp [iQ L! dre “(y*+ 2ﬂuyf)]> (3.7)

1

where for notatinal abbreviation we have dropped the dependence upon y,
and £2.
It can be shown!”) that

Ryl a=[""a o (38)

— 0

and I'(y, 1) fulfills the following equation:

or(y, 0 ?*
0.0 _ cx—y+7’—5+i9e""(y2+2i~y)] 1y, 1) (3.9)
ot dy oy

with the Cauchy boundary condition
I(y,0)=Py(y,0) (3.10)

Let us look for a solution of Eq. (3.9) in the form of the gaussian-type
function
I'(y, t)=exp[A(1) y*+ B(z) y + C(1)] (3.11)

where A(t), B(t), and C(¢) are to be found. They obey the following dif-
ferential equations:

A=4yA> + 204 +iQe ",  A(0)= —a/2y (3.12)
B=(a+4yA)B+2ilQe ",  B(0)=0 (3.13)
C=a+2yA+yB%,  C(0)=(1/2) In(a/2my) (3.14)

It is seen that if the solution A(f) of Eq. (3.12) is known, then Egs. (3.13)
and (3.14) can formally be integrated. However, Eq. (3.12) is a Riccati one
and it is rather difficult to solve it.

4. SOLUTION OF RICCAT! EQUATION

It is well known that any Riccati equation may be transformed into a
homogeneous second-order linear differential equation. In the considered
case, by the substitution

A= XX (4.1)
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Eg. (3.12) leads to
X — 20X +4iyQe X =0 (4.2)
The change of the independent variable
s=4iyQe " (4.3)

transforms Eq. (4.2) into
s 20\ . 1
sX(s)+ 1+—C— X(S)-{—?X(S):O (4.4)
An explicit solution of this equation is known for two cases.® If

c?=—1, l+—=-2n, neN (4.5)
c

But then o= +i(2n+4 1)/2 and this is in contradiction to the assumption
(2.6). This case must be cast away. If

c=4u/(2n—1), neNu {0} (4.6)

then two particular solutions of (4.4) read®

X,(s) :% cos [(”—*i)*é] (4.7)
" 1
X,(s) =~ sin [(l—;)ig] (4.8)

Hence, with the help of (4.3) and (4.1), two particular solutions of the Ric-
cati equation (3.12) are known. The general solution can be found
explicitly.

From Eq. (4.6) it follows that

c=—4a<0 for n=0 (4.9)
and

¢>0 for neN (4.10)

In the deterministic case corresponding to (2.12) the solutions are unstable
for (4.10) and stable for (4.9). Therefore, we will consider only relaxation
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problem, ¢ <0 (4.9). In this case, the solution of Eq. (3.12) has the follow-
ing form:
o M sin r(t) + cos r(t)

A(t)=—r(t 4.11
() 2y rl )Mcos r(t)—sin r(t) (411)
where the notation
r(t) =r exp(2at) (4.12)
r? = iyQ/a? (4.13)
has been introduced and the constant parameter M is given by
_sinr—rcosr (4.14)

cosr-+rsinr

Equation (3.13) can be solved, but the solution is expressed by the Fresnel
integrals. If we simplify the model (2.12) setting

A=0 (4.15)
then
B(1)=0 (4.16)
and
Mcosr—sinr

t
C(l):c(0)+az+§lnMcos r(¢)—sin r(¢) (417)

After the simplifications (4.9) and (4.15) our starting model reduces to the
form
Z,= —4oz,+ vy? (4.18)

Now, the explicit formula for the functional (3.5) can be calculated and
reads
F[y]Q,t]=[cosr(e® —1)—rsinr(e** —1)] 2 (4.19)

with r defined by Eq. (4.13).

5. PROBABILITY DISTRIBUTION

Using formula (4.19) and Eq. (3.6), from Eq. (3.2) for the case A=0
one can obtain the characteristic function in the following form

C(w, 1) = exp(iwzye ™ **)[cos(r, \/5 (1—e )
. ro\/aeflatsin(ro\/—a;(lv_€~2o¢t))]71/2 (51)
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where
ri=iyv/a? (5.2)

The final result for the one-dimensional probability distribution of the
process (4.18) with initial condition (2.13} is

1 ro
P(z, t)=2—f do
TJ— o
exp[ —iw(z — zge ~*)]

[cos(ro /@ (1—e™2)) = ry /o e 72 sin(ry /o (1 — e 2)) ]2
(5.3)

X

For t=0, obviously P(z,0)=0(z—z,). The stationary state of the process
(4.18) exists for all assumed values of parameters «, y (2.6) and ve R. The
stationary probability density

1 © e~iwz
. Ao ———————— 54
2n J*oo “ [cos(r \/5)]1/2 G4

does not depend upon the initial value of the considered process. In such a
case we say that the process is ergodic (see Section 10 in Ref. 10).

The knowledge of the characteristic function C(w, t) is sufficient to
calculate the main characteristics of the linear process (as the mean value,
fluctuations, and so on). For nonlinear model (2.1) with (2.9), (4.9), and
(4.15) we need

Pst(Z) =

alx)

c
P(X’I)ZWSP(Z:HX_)_’t) (59)

and with the help of (5.3), P(x, r}) is khown.

6. SIMPLE CHARACTERISTICS OF THE LINEAR PROCESS

The moments (z")», neN, of the linear process (2.11) can be
calculated directly from Eq. (2.11). For the model (4.18) we can utilize the
characteristic function (5.1). The average value and the fluctuations of the
process (4.18) are given by

Yy

<z,>=zoe_4°”+m(l—e*4°”) (6.1)

1242

;2:(4 (1 — de 0% 4 3¢5 (6.2)

(z}) —<z,)*=



Soluble Model with Quadratic Noise 1017

For the corresponding model coupled to the linear noise
z,= —doz,+vy, (6.3)
one gets

(20> =z
2

(2> = (2> =g (38 4 5e ™) (6.5)

In general, the white noise limit may not be carried out for models with a
nonlinear noise. Because of some peculiarity of the model (4.18), let us con-
sider the problem of the white noise limit. By the substitution

y=a’c?/2 (6.6)

the limit & — oo corresponds to the case of the white noise in Eq. (2.5),
y,dt=cdW, It can be seen from Egs.(6.1) and (6.2) that if (i)v=
¢= —4u as in Eq. (2.11), then the white noise limit may not be performed
(all moments diverge), and (ii) if v is independent of & then the limit & — oo
is finite in all expressions and from Egs. (6.1) and (6.2) one can obtain

lim <{z,)>=ve?*8 (6.7)

& — o0

lim ({z2) —{z,>%)=v?c"/48 (6.8)

In this limit o — oo, the characteristic function (5.1) becomes
C(w, t)= C(w) = [cos(iva’w/2)*] 7172 (6.9)

and the probability distribution P(z, t)= P(z) (5.3) is well defined.

7. FINAL REMARKS

We have described the method for solving the simple model with a
quadratic noise. We have started from a general linear model (2.12) which
contains three free parameters, ¢, 4, and v. Our approach gives the exact
probability density of the process only when ¢= —4a, A=0 and for
arbitrary v. The model of interest has a particular form since the damping
parameter in the relaxation problem depends linearly on the inversion of
the correlation time of the noise.

In the case of the linecar model (4.18) the probability density is known;
however, it is useless for calculation of the moments. On the contrary for

822/42/5-6-19
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nonlinear models transformabie into linear ones the form of the probability
distribution must be known.

In a previous paper®® the example of a nonlinear model transformable
into a linear one coupled to the linear noise was presented. This model,
which is stable in the deterministic case, exhibits instabilities induced by the
noise, even if ¢ = —4q, as in the present paper. It would be interesting to
compare this model with the analogical one coupled to the quadratic noise.
To do this the determination of the most probable values of the process,
which correspond to the extrema of P(x, t) (5.9), should be carried out.
Such a numerical analysis is being performed.

It is remarkable that taking of the white noise limit for the model with
the quadratic noise is possible. It seems that in this limit the process z, can
be treated as some kind of transformation of the white noise. Up to now
our efforts to determine the form of this transformation have turned out
fruitless.
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