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Soluble 

A one-dimensional evolution equation transformable into a linear one coupled 
to a quadratic Smoluchowski (an Ornstein-Uhlenbeck) noise is considered. A 
one-dimensional probability distribution is obtained by way of a characteristic 
function which is expressed by functionals of the Smoluchowski process. It is 
shown that in the frame of the presented approach the probability density can 
be found only for a particular value of the damping constant in the linear-type 
relaxation equation, It is also shown that in a special case the white noise limit 
may be performed. 

KEY WORDS: Langevin equation; quadratic noise; functionals of stochastic 
process; exactly solved models. 

1, I N T R O D U C T I O N  

In recent years we have seen an increasing interest  in evolu t ion  equat ions  
with f luctuat ing parameters .  The ma in  reason is tha t  equa t ions  of  this type 
become more  and more  i m p o r t a n t  for different appl ica t ions .  

The  one-d imens iona l  differential  equa t ion  with one l inear  r a n d o m  
p a r a m e t e r  is the s implest  case. This type of  p rob l e m has been inves t iga ted  
in connec t ion  with instabi l i t ies  of  the system induced  by noises. (1 3) A more  
difficult p r o b l e m  is when an evolu t ion  equa t ion  is a non l inea r  funct ion of  
the f luctuat ing parameter .  This pape r  is concerned  with a system descr ibed  
by a non l inear  o rd ina ry  differential  equa t ion  with a quad ra t i c  noise assum- 
ing that  this equa t ion  is t r ans fo rmab le  into a l inear  equat ion.  In  the con- 
s idered case, the s tar t ing non l inea r  equa t ion  is coup led  to the mul-  
t ipl icat ive noise and the t r ans fo rma t ion  leads to a l inear  one with the 
addi t ive  noise. O u r  p r ima ry  pu rpose  is to ob ta in  the exact  one-d imens iona l  
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probability distribution for the process valid for all time t > O. It is assumed 
that the initial probability density is the 6 distribution and that the noise is 
a stationary Smoluchowski process. We are able to solve the problem only 
for particular values of parameters that occur in the evolution equation. 
And only in this case we can obtain a compact formula for the probability 
distribution. 

There are several works on evolution equations of the Langevin type 
with a quadratic noise. (4 6) San Miguel and Sancho ~4) derived an 
approximate form of a Fokker-Planck equation associated with the 
Langevin equation. W6dkiewicz ~5~ obtained formally the exact equation for 
the probability density. His equation is useful only for approximate 
calculations for two reasons. Firstly, it is an integro-differential equation, 
and secondly, the kernel of this equation is a differential operator with an 
infinite number of derivatives. 

In the remainder of this paper, we proceed as follows. In Section 2 we 
present the model. In Section 3, the probability distribution related to the 
stochastic process is investigated by way of its characteristic function. It 
can be expressed by a functional of the Smoluchowski noise. Following 
Van Kampen ~7~ we define the "curtailed" functional which obeys a definite 
equation. Assuming that the solution of this equation may be represented 
by a Gaussian-type function, we obtain a set of three ordinary differential 
equations of the first order. One of these equations is the Riccati one. It 
turns out that explicit formulas for the general solution of the Riccati 
equation can be given only for particular values of parameters. It is shown 
in Section 4. In Section 5 we present the main result of the paper, namely, 
the probability density which is expressed by the Riemann integral of the 
real-valued function over a real positive half-axis. In Section 6 we present 
simple characteristics of the linear process with the quadratic noise and 
compare them with characteristics of the linear process coupled to the 
linear noise. The problem of the white noise limit is also considered. Sec- 
tion 7 contains final remarks. 

2. P R O B L E M  

This paper deals with a one-dimensional ordinary differential (an 
evolution or a kinetic) equation coupled to a quadratic noise. An example 
of such a type of equation is given by 

2t = a(x,) + L2b(x~) (2.1) 

where 

x ~ U c ~, x~0 = x o (2.2) 
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and L is a parameter which is the random variable 

L = 2 + y ,  (2.3) 

Here, 2 is the expectation value of L and y, is a noise with the mean value 

(y ,>  = 0  (2.4) 

Because y, may not be a white noise, we take the simplest model of a non- 
white noise, namely, y, is assumed to be a stationary Smoluchowski 
process 

dy, = - ~ y ,  dt + (27) 1/2 dW, (2.5) 

where 
c q y e R  +, y e n  (2.6) 

and subjects to given initial conditions 

(Yo) =0,  (yo2) = 7/~ (2.7) 

Hence, y, is a colored noise with (2.4) and 

< y, y,> = (7/cQ e x p ( - ~  r t -  sl ) (2.8) 

On the whole, the problem set in this form is unsoluble, although the 
Kolmogorov-Fokker-Planck equation for the two-dimensional diffusion 
process (x,, y,) is known. The problem considerably simplifies when 
Eq. (2.1) can be transformed into a linear one, scil. if 

d [a(x ) ]  c 
~xx Lb(x)J = b - ~  > 0 (2.9) 

where c is a constant parameter. Then for the variable 

a(x) 
z = - -  (2.10) 

b(x) 

we have 

Zt = CZt "k C(2 Jr" y,)2 

Let us consider a slightly different equation 

Zt = CZt -~- ld( f*~ -JC yt) 2 

with the new constant v. 

(2.11) 

(2.12) 
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Our aim is to determine the probability distribution 
process z, (2.12) with the following initial conditions: 

Z,o=Z o for to=O 

P~(y, 0 ) =  (c~/2rc7) 1/2 e x p ( -  ~y2/27) 

where PI(Y, 0) is the initial probability distribution for y, 

P(z, t) of the 

(2.13) 

(2.14) 

(2.5). The 
method to be used is based on the characteristic function of z~ and certain 
functionals of the Smoluchowski process. 

3. C H A R A C T E R I S T I C  F U N C T I O N  

Simple properties of the process z, (2.12) can be investigated and 
obtained from its characteristic function 

C(co, t )=  dz ei~ t )=  ( e  ~z ' )  
oo  

(3.1) 

From Eq. (2.12) it follows that 

C(m, t) = P[y t  I co, t] exp~icozoe'" + io~).2v(e c' - 1 )/c] (3.2) 

where the functional 

( [  ;; ]) FEy,tco, t ] =  exp ie)ve ct d re -~~(y~+22y~)  
1 

(3.3) 

and the subscript 1 indicates that the mean value is taken over all 
realization of the Smoluchowski process y, (2.5) with the initial value 
(2.14). 

For fixed t = T we define Is) 

= cove cT (3.4) 

and 

cz  2 Fl[y ,] f2 ,  T] = exp if2 dz e (y~ + 22y~) 
1 

(3.5) 

Then, of course, 

FEy~]co, t] = F l [y~[Q=cove  a, t] (3.6) 
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Let us define the "curtailed" functional (7) 

F(Y,t)=16(Y,-y)exp[i~2f~ 
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dze '~(y~ + 22y~)])~ (3.7) 

where for notatinal abbreviation we have dropped the dependence upon y, 
and ~. 

It can be shown (7) that 

F~Ey,](2, t] =j_~ dy F(y, t) (3.8) 

and F(y, t) fulfills the following equation: 

8F(Y' t) I 92 1 -- e~yY+7--+if2e-"(v2+2)oy) F(y,t) (3.9) 8y2 

with the Cauchy boundary condition 

F(y, O) = Pa(y, 0) (3.10) 

Let us look for a solution of Eq. (3.9) in the form of the gaussian-type 
function 

F(y, t) = exp[A(t)  y2 + B(t) y + C(t)] (3.11 ) 

where A(t), B(t), and C(t) are to be found. They obey the following dif- 
ferential equations: 

d = 47A 2 + 2~A + i(2e -c,, A(0) = -~/27 (3.12) 

= (c~ + 47A)B + 2i2(2e c,, B(0) = 0 (3.13) 

~7 = e + 27A + 7B 2, C(0) = (1/2) ln(~/2~ZT) (3.14) 

It is seen that if the solution A(t) of Eq. (3.12) is known, then Eqs. (3.13) 
and (3.14) can formally be integrated. However, Eq. (3.12) is a Riccati one 
and it is rather difficult to solve it. 

4. S O L U T I O N  OF  R I C C A T I  E Q U A T I O N  

It is well known that any Riccati equation may be transformed into a 
homogeneous second-order linear differential equation. In the considered 
case, by the substitution 

A = -J(/47X (4.1) 
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Eq. (3.12) leads to 

- 2~X + 4iTf2e ctX = 0 

The change of the independent variable 

s = 4&f2e- ~ 

transforms Eq. (4.2) into 

s ' ( s ) + ( l  +2-~-~)2(s)+ 1 7 x ( , )  =- o 

Luczka 

(4.2) 

(4.3) 

(4.4) 

c > 0  for n ~ N  (4.10) 

In the deterministic case corresponding to (2.12) the solutions are unstable 
for (4.10) and stable for (4.9). Therefore, we will consider only relaxation 

and 

An explicit solution of this equation is known for two cases, m) If 

2e 
c2= -1 ,  1 + - - =  -2n,  n e N  (4.5) 

c 

But then ~ = +__i(2n + 1)/2 and this is in contradiction to the assumption 
(2.6). This case must be cast away. If 

c = 4 ~ / ( 2 n -  1), n e N ~  {0} (4.6) 

then two particular solutions of (4.4) read (9~ 

] x,( l ; cos (4.7) 

X2( s ) = ds---; sin (4.8) 

Hence, with the help of (4.3) and (4.1), two particular solutions of the Ric- 
cati equation (3.12) are known. The general solution can be found 
explicitly. 

From Eq. (4.6) it follows that 

c = - 4 ~ < 0  for n = 0  (4.9) 
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problem,  c < 0  (4.9). In  this case, the solution of Eq. (3.12) has the follow- 
ing form: 

c~ . . M s i n  r(t) + cos r(t) (4.11) 
A(I)  = ~ rtt)  m cos r(t) - sin r(t) 

where the no ta t ion  

r(  t )  = r exp(2~t) (4.12) 

r 2 = i7~'~/~ 2 (4.13) 

has been in t roduced and the constant  p a r a m e t e r  M is given by 

sin r - r cos r 
M - (4.14) 

cos r + r sin r 

Equa t ion  (3.13) can be solved, but  the solut ion is expressed by the Fresnel 
integrals. If  we simplify the model  (2.12) setting 

then 

and 

2 = 0  (4.15) 

B ( t ) = 0  (4.16) 

l M cos r - sin r 
C(t) = C(0) + c~t + z ~ In M--c-~os rtt)--=-c _ sin rt)-'t" (4.17) 

After the simplifications (4.9) and (4.15) our  start ing model  reduces to the 
form 

~ = -4ez~ + vy~ (4.18) 

Now,  the explicit fo rmula  for the functional  (3.5) can be calculated and 
reads 

Ft[yt lg2,  t ]  = [cos r(e 2~t-  1) - -  r sin r(e 2~t-  1)] -1/2 (4.19) 

with r defined by Eq. (4.13). 

5. P R O B A B I L I T Y  D I S T R I B U T I O N  

Using formula  (4.19) and Eq. (3.6), f rom Eq. (3.2) for the case 2 = 0 
one can obta in  the characterist ic function in the following form 

C(~o, t) = exp(icozoe-4~t)[cos(ro ~ (1 - e - ~ t ) )  

_ rox / -~e  2 = t s i n ( r o x f - ~ ( l _ e - 2 ~ t ) )  ? 1/2 (5.1) 
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where 

r 2 = i7v/a 2 (5.2) 

The final result for the one-dimensional probability distribution of the 
process (4.18) with initial condition (2.13) is 

P(z, t)=~ do 
cO 

e x p [ - i c ~ ( Z -  Zoe 4~,)] 
X 

[cos(ro xf l -~(1-e-2~t))  _ ro ~ e-2~ sin(to x/-~ ( 1 - e - 2 ~ , ) ) ]  1/2 
(5.3) 

For t = 0 ,  obviously P(z, O)=6(Z-Zo).  The stationary state of the process 
(4.18) exists for all assumed values of parameters ~, 7 (2.6) and ve  ~. The 
stationary probability density 

1 f ~  e -i~Jz 
Pst(Z) =~-~ - ~  do [cos(to x/-~)] 1/2 (5.4) 

does not depend upon the initial value of the considered process. In such a 
case we say that the process is ergodic (see Section 10 in Ref. 10). 

The knowledge of the characteristic function C(co, t) is sufficient to 
calculate the main characteristics of the linear process (as the mean value, 
fluctuations, and so on). For nonlinear model (2.1) with (2.9), (4.9), and 
(4.15) we need 

c ( a ( x )  ' 
P(x, t ) = ~ )  P t (5.9) 

and with the help of (5.3), P(x, t) is kl~own. 

6. S I M P L E  C H A R A C T E R I S T I C S  OF THE LINEAR PROCESS 

The moments <zT>, n~N,  of the linear process (2.11) can be 
calculated directly from Eq. (2.11). For the model (4.18) we can utilize the 
characteristic function (5.1). The average value and the fluctuations of the 
process (4.18) are given by 

( z , )  = zoe-4"t+ ~ (1 - e-4at) 

72v2 3e s~) (z~ a) - ( z , )  2 = l - ~ a  4 (1 - 4e-6~t + 

(6.1) 

(6.2) 
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For the corresponding model coupled to the linear noise 

~, = -4c~z~ + vy, 

one gets 

(Zt ) ~- Zo e-4c~t 

<z2> - - 2  ? v2 (3_8e-5~,  5e-S~,) 
- <z ,2  - 6 - - - ~  3 + 

(6.3) 

(6.5) 

In general, the white noise limit may not be carried out for models with a 
nonlinear noise. Because of some peculiarity of the model (4.18), let us con- 
sider the problem of the white noise limit. By the substitution 

= 0 ~ 2 0 " 2 / 2  (6.6) 

the limit cr --, oo corresponds to the case of the white noise in Eq. (2.5), 
y, d t = o d W t .  It can be seen from Eqs.(6.1) and (6.2) that if ( i ) v=  
c =  -4~  as in Eq. (2.11), then the white noise limit may not be performed 
(all moments diverge), and (ii) if v is independent of ~ then the limit c~ --* oo 
is finite in all expressions and from Eqs. (6.1) and (6.2) one can obtain 

lira <z,> = vrr2/8 (6.7) 
c ~ o o  

lim (<z2> - <z,> z) = v2ff4/48 (6.8) 
c ~ o o  

In this limit cr o% the characteristic function (5.1) becomes 

C(r t) = C(o) ) = [cos( iva2oo/2 ) 1/a] -1/2 

and the probability distribution P(z, t )=  P(z) (5.3) is well defined. 

(6.9) 

7.  F I N A L  R E M A R K S  

We have described the method for solving the simple model with a 
quadratic noise. We have started from a general linear model (2,12) which 
contains three free parameters, c, 2, and v. Our approach gives the exact 
probability density of the process only when c=-4c~ ,  Z = 0  and for 
arbitrary v. The model of interest has a particular form since the damping 
parameter in the relaxation problem depends linearly on the inversion of 
the correlation time of the noise. 

In the case of the linear model (4.18) the probability density is known; 
however, it is useless for calculation of the moments. On the contrary for 

822/42/5-6-19 
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nonlinear models transformable into linear ones the form of the probability 
distribution must be known. 

In a previous paper  ~3) the example of a nonlinear model transformable 
into a linear one coupled to the linear noise was presented. This model, 
which is stable in the deterministic case, exhibits instabilities induced by the 
noise, even if c = -4~ ,  as in the present paper. It would be interesting to 
compare this model with the analogical one coupled to the quadratic noise. 
To do this the determination of the most  probable values of the process, 
which correspond to the extrema of P(x,  t) (5.9), should be carried out. 
Such a numerical analysis is being performed. 

It  is remarkable that taking of the white noise limit for the model with 
the quadratic noise is possible. It seems that in this limit the process zt can 
be treated as some kind of transformation of the white noise. Up to now 
our efforts to determine the form of this transformation have turned out 
fruitless. 

A C K N O W L E D G M E N T S  

The author would like to express his sincerest thanks to Professor A. 
Pawlikowski for discussions. The author 's  colleagues at the Depar tment  of 
Theoretical Physics, especially J. Kuczyfiski and J. Stadkowski, are thanked 
for helpful remarks and discussions. The author is also indebted to Dr. P. 
Trzaskoma and J. Stadkowski for their help during the preparat ion of this 
paper. 

REFERENCES 

1. W. Horsthemke, in Dynamics of Synergetic Systems, H. Haken, ed. (Springer-Verlag, 
Berlin, 1980), p. 67 and references therein. 

2. M.-O. Hongler, Heir. Phys. Acta 52:280 (1979). 
3. J. Luczka, Phys. Lett. 102A:401 (1984). 
4. M. San Miguel and J. M. Sancho, Z. Phys. B43:361 (1981). 
5. K. W6dkiewicz, J. Math. Phys. 23:2179 (1982). 
6. T. Kawakubo, A. Yanagita, and S. Kabashima, J. Phys. Soc. Jpn. 50:1451 (1981). 
7. N. G. Van Kampen, Phys. Lett. 76A:104 (1980). 
8. P. Sibani and N. G. Van Karnpen, Physica 122A:397 (1983). 
9. E. Kamke, Differentialgleichungen L6sungsmethoden und L6sungen (Akademische 

Verlagsgesellschaft, Leipzig, 1956), p. 424. 
10. V. I. Tikhonov and M. A. Mironov, Markovian Processes (Sovietskoe Radio, Moscow, 

1977) (in Russian). 


